3.4.28 \(\int \frac {1}{x^{7/2} (1+x^2)^2} \, dx\) [328]

Optimal. Leaf size=131 \[ -\frac {9}{10 x^{5/2}}+\frac {9}{2 \sqrt {x}}+\frac {1}{2 x^{5/2} \left (1+x^2\right )}-\frac {9 \tan ^{-1}\left (1-\sqrt {2} \sqrt {x}\right )}{4 \sqrt {2}}+\frac {9 \tan ^{-1}\left (1+\sqrt {2} \sqrt {x}\right )}{4 \sqrt {2}}+\frac {9 \log \left (1-\sqrt {2} \sqrt {x}+x\right )}{8 \sqrt {2}}-\frac {9 \log \left (1+\sqrt {2} \sqrt {x}+x\right )}{8 \sqrt {2}} \]

[Out]

-9/10/x^(5/2)+1/2/x^(5/2)/(x^2+1)+9/8*arctan(-1+2^(1/2)*x^(1/2))*2^(1/2)+9/8*arctan(1+2^(1/2)*x^(1/2))*2^(1/2)
+9/16*ln(1+x-2^(1/2)*x^(1/2))*2^(1/2)-9/16*ln(1+x+2^(1/2)*x^(1/2))*2^(1/2)+9/2/x^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.692, Rules used = {296, 331, 335, 303, 1176, 631, 210, 1179, 642} \begin {gather*} -\frac {9 \text {ArcTan}\left (1-\sqrt {2} \sqrt {x}\right )}{4 \sqrt {2}}+\frac {9 \text {ArcTan}\left (\sqrt {2} \sqrt {x}+1\right )}{4 \sqrt {2}}-\frac {9}{10 x^{5/2}}+\frac {1}{2 x^{5/2} \left (x^2+1\right )}+\frac {9}{2 \sqrt {x}}+\frac {9 \log \left (x-\sqrt {2} \sqrt {x}+1\right )}{8 \sqrt {2}}-\frac {9 \log \left (x+\sqrt {2} \sqrt {x}+1\right )}{8 \sqrt {2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^(7/2)*(1 + x^2)^2),x]

[Out]

-9/(10*x^(5/2)) + 9/(2*Sqrt[x]) + 1/(2*x^(5/2)*(1 + x^2)) - (9*ArcTan[1 - Sqrt[2]*Sqrt[x]])/(4*Sqrt[2]) + (9*A
rcTan[1 + Sqrt[2]*Sqrt[x]])/(4*Sqrt[2]) + (9*Log[1 - Sqrt[2]*Sqrt[x] + x])/(8*Sqrt[2]) - (9*Log[1 + Sqrt[2]*Sq
rt[x] + x])/(8*Sqrt[2])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {1}{x^{7/2} \left (1+x^2\right )^2} \, dx &=\frac {1}{2 x^{5/2} \left (1+x^2\right )}+\frac {9}{4} \int \frac {1}{x^{7/2} \left (1+x^2\right )} \, dx\\ &=-\frac {9}{10 x^{5/2}}+\frac {1}{2 x^{5/2} \left (1+x^2\right )}-\frac {9}{4} \int \frac {1}{x^{3/2} \left (1+x^2\right )} \, dx\\ &=-\frac {9}{10 x^{5/2}}+\frac {9}{2 \sqrt {x}}+\frac {1}{2 x^{5/2} \left (1+x^2\right )}+\frac {9}{4} \int \frac {\sqrt {x}}{1+x^2} \, dx\\ &=-\frac {9}{10 x^{5/2}}+\frac {9}{2 \sqrt {x}}+\frac {1}{2 x^{5/2} \left (1+x^2\right )}+\frac {9}{2} \text {Subst}\left (\int \frac {x^2}{1+x^4} \, dx,x,\sqrt {x}\right )\\ &=-\frac {9}{10 x^{5/2}}+\frac {9}{2 \sqrt {x}}+\frac {1}{2 x^{5/2} \left (1+x^2\right )}-\frac {9}{4} \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {x}\right )+\frac {9}{4} \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {x}\right )\\ &=-\frac {9}{10 x^{5/2}}+\frac {9}{2 \sqrt {x}}+\frac {1}{2 x^{5/2} \left (1+x^2\right )}+\frac {9}{8} \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {x}\right )+\frac {9}{8} \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {x}\right )+\frac {9 \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {2}}+\frac {9 \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {x}\right )}{8 \sqrt {2}}\\ &=-\frac {9}{10 x^{5/2}}+\frac {9}{2 \sqrt {x}}+\frac {1}{2 x^{5/2} \left (1+x^2\right )}+\frac {9 \log \left (1-\sqrt {2} \sqrt {x}+x\right )}{8 \sqrt {2}}-\frac {9 \log \left (1+\sqrt {2} \sqrt {x}+x\right )}{8 \sqrt {2}}+\frac {9 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {x}\right )}{4 \sqrt {2}}-\frac {9 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {x}\right )}{4 \sqrt {2}}\\ &=-\frac {9}{10 x^{5/2}}+\frac {9}{2 \sqrt {x}}+\frac {1}{2 x^{5/2} \left (1+x^2\right )}-\frac {9 \tan ^{-1}\left (1-\sqrt {2} \sqrt {x}\right )}{4 \sqrt {2}}+\frac {9 \tan ^{-1}\left (1+\sqrt {2} \sqrt {x}\right )}{4 \sqrt {2}}+\frac {9 \log \left (1-\sqrt {2} \sqrt {x}+x\right )}{8 \sqrt {2}}-\frac {9 \log \left (1+\sqrt {2} \sqrt {x}+x\right )}{8 \sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 77, normalized size = 0.59 \begin {gather*} \frac {1}{40} \left (\frac {4 \left (-4+36 x^2+45 x^4\right )}{x^{5/2} \left (1+x^2\right )}+45 \sqrt {2} \tan ^{-1}\left (\frac {-1+x}{\sqrt {2} \sqrt {x}}\right )-45 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt {x}}{1+x}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(7/2)*(1 + x^2)^2),x]

[Out]

((4*(-4 + 36*x^2 + 45*x^4))/(x^(5/2)*(1 + x^2)) + 45*Sqrt[2]*ArcTan[(-1 + x)/(Sqrt[2]*Sqrt[x])] - 45*Sqrt[2]*A
rcTanh[(Sqrt[2]*Sqrt[x])/(1 + x)])/40

________________________________________________________________________________________

Maple [A]
time = 0.46, size = 79, normalized size = 0.60

method result size
derivativedivides \(\frac {x^{\frac {3}{2}}}{2 x^{2}+2}+\frac {9 \sqrt {2}\, \left (\ln \left (\frac {1+x -\sqrt {2}\, \sqrt {x}}{1+x +\sqrt {2}\, \sqrt {x}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {x}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {x}\right )\right )}{16}-\frac {2}{5 x^{\frac {5}{2}}}+\frac {4}{\sqrt {x}}\) \(79\)
default \(\frac {x^{\frac {3}{2}}}{2 x^{2}+2}+\frac {9 \sqrt {2}\, \left (\ln \left (\frac {1+x -\sqrt {2}\, \sqrt {x}}{1+x +\sqrt {2}\, \sqrt {x}}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {x}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {x}\right )\right )}{16}-\frac {2}{5 x^{\frac {5}{2}}}+\frac {4}{\sqrt {x}}\) \(79\)
risch \(\frac {45 x^{4}+36 x^{2}-4}{10 \left (x^{2}+1\right ) x^{\frac {5}{2}}}+\frac {9 \arctan \left (1+\sqrt {2}\, \sqrt {x}\right ) \sqrt {2}}{8}+\frac {9 \arctan \left (-1+\sqrt {2}\, \sqrt {x}\right ) \sqrt {2}}{8}+\frac {9 \sqrt {2}\, \ln \left (\frac {1+x -\sqrt {2}\, \sqrt {x}}{1+x +\sqrt {2}\, \sqrt {x}}\right )}{16}\) \(86\)
meijerg \(-\frac {2 \left (-45 x^{4}-36 x^{2}+4\right )}{5 x^{\frac {5}{2}} \left (4 x^{2}+4\right )}+\frac {9 x^{\frac {3}{2}} \left (\frac {\sqrt {2}\, \ln \left (1-\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}+\sqrt {x^{2}}\right )}{2 \left (x^{2}\right )^{\frac {3}{4}}}+\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}{2-\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}\right )}{\left (x^{2}\right )^{\frac {3}{4}}}-\frac {\sqrt {2}\, \ln \left (1+\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}+\sqrt {x^{2}}\right )}{2 \left (x^{2}\right )^{\frac {3}{4}}}+\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}{2+\sqrt {2}\, \left (x^{2}\right )^{\frac {1}{4}}}\right )}{\left (x^{2}\right )^{\frac {3}{4}}}\right )}{8}\) \(157\)
trager \(\frac {45 x^{4}+36 x^{2}-4}{10 \left (x^{2}+1\right ) x^{\frac {5}{2}}}+\frac {9 \RootOf \left (\textit {\_Z}^{4}+1\right ) \ln \left (-\frac {\RootOf \left (\textit {\_Z}^{4}+1\right )^{5} x -\RootOf \left (\textit {\_Z}^{4}+1\right )^{5}+2 \RootOf \left (\textit {\_Z}^{4}+1\right )^{3}-\RootOf \left (\textit {\_Z}^{4}+1\right ) x +4 \sqrt {x}-\RootOf \left (\textit {\_Z}^{4}+1\right )}{\RootOf \left (\textit {\_Z}^{4}+1\right )^{2} x -\RootOf \left (\textit {\_Z}^{4}+1\right )^{2}-x -1}\right )}{8}-\frac {9 \RootOf \left (\textit {\_Z}^{4}+1\right )^{3} \ln \left (-\frac {-\RootOf \left (\textit {\_Z}^{4}+1\right )^{5} x +\RootOf \left (\textit {\_Z}^{4}+1\right )^{5}+2 \RootOf \left (\textit {\_Z}^{4}+1\right )^{3} x -\RootOf \left (\textit {\_Z}^{4}+1\right ) x +4 \sqrt {x}-\RootOf \left (\textit {\_Z}^{4}+1\right )}{\RootOf \left (\textit {\_Z}^{4}+1\right )^{2} x -\RootOf \left (\textit {\_Z}^{4}+1\right )^{2}+x +1}\right )}{8}\) \(208\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(7/2)/(x^2+1)^2,x,method=_RETURNVERBOSE)

[Out]

1/2*x^(3/2)/(x^2+1)+9/16*2^(1/2)*(ln((1+x-2^(1/2)*x^(1/2))/(1+x+2^(1/2)*x^(1/2)))+2*arctan(1+2^(1/2)*x^(1/2))+
2*arctan(-1+2^(1/2)*x^(1/2)))-2/5/x^(5/2)+4/x^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.56, size = 97, normalized size = 0.74 \begin {gather*} \frac {9}{8} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {x}\right )}\right ) + \frac {9}{8} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {x}\right )}\right ) - \frac {9}{16} \, \sqrt {2} \log \left (\sqrt {2} \sqrt {x} + x + 1\right ) + \frac {9}{16} \, \sqrt {2} \log \left (-\sqrt {2} \sqrt {x} + x + 1\right ) + \frac {45 \, x^{4} + 36 \, x^{2} - 4}{10 \, {\left (x^{\frac {9}{2}} + x^{\frac {5}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(7/2)/(x^2+1)^2,x, algorithm="maxima")

[Out]

9/8*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(x))) + 9/8*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(x)))
 - 9/16*sqrt(2)*log(sqrt(2)*sqrt(x) + x + 1) + 9/16*sqrt(2)*log(-sqrt(2)*sqrt(x) + x + 1) + 1/10*(45*x^4 + 36*
x^2 - 4)/(x^(9/2) + x^(5/2))

________________________________________________________________________________________

Fricas [A]
time = 1.62, size = 163, normalized size = 1.24 \begin {gather*} -\frac {180 \, \sqrt {2} {\left (x^{5} + x^{3}\right )} \arctan \left (\sqrt {2} \sqrt {\sqrt {2} \sqrt {x} + x + 1} - \sqrt {2} \sqrt {x} - 1\right ) + 180 \, \sqrt {2} {\left (x^{5} + x^{3}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} \sqrt {-4 \, \sqrt {2} \sqrt {x} + 4 \, x + 4} - \sqrt {2} \sqrt {x} + 1\right ) + 45 \, \sqrt {2} {\left (x^{5} + x^{3}\right )} \log \left (4 \, \sqrt {2} \sqrt {x} + 4 \, x + 4\right ) - 45 \, \sqrt {2} {\left (x^{5} + x^{3}\right )} \log \left (-4 \, \sqrt {2} \sqrt {x} + 4 \, x + 4\right ) - 8 \, {\left (45 \, x^{4} + 36 \, x^{2} - 4\right )} \sqrt {x}}{80 \, {\left (x^{5} + x^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(7/2)/(x^2+1)^2,x, algorithm="fricas")

[Out]

-1/80*(180*sqrt(2)*(x^5 + x^3)*arctan(sqrt(2)*sqrt(sqrt(2)*sqrt(x) + x + 1) - sqrt(2)*sqrt(x) - 1) + 180*sqrt(
2)*(x^5 + x^3)*arctan(1/2*sqrt(2)*sqrt(-4*sqrt(2)*sqrt(x) + 4*x + 4) - sqrt(2)*sqrt(x) + 1) + 45*sqrt(2)*(x^5
+ x^3)*log(4*sqrt(2)*sqrt(x) + 4*x + 4) - 45*sqrt(2)*(x^5 + x^3)*log(-4*sqrt(2)*sqrt(x) + 4*x + 4) - 8*(45*x^4
 + 36*x^2 - 4)*sqrt(x))/(x^5 + x^3)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 384 vs. \(2 (121) = 242\).
time = 2.64, size = 384, normalized size = 2.93 \begin {gather*} \frac {45 \sqrt {2} x^{\frac {9}{2}} \log {\left (- 4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} - \frac {45 \sqrt {2} x^{\frac {9}{2}} \log {\left (4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} + \frac {90 \sqrt {2} x^{\frac {9}{2}} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} - 1 \right )}}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} + \frac {90 \sqrt {2} x^{\frac {9}{2}} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} + 1 \right )}}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} + \frac {45 \sqrt {2} x^{\frac {5}{2}} \log {\left (- 4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} - \frac {45 \sqrt {2} x^{\frac {5}{2}} \log {\left (4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} + \frac {90 \sqrt {2} x^{\frac {5}{2}} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} - 1 \right )}}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} + \frac {90 \sqrt {2} x^{\frac {5}{2}} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} + 1 \right )}}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} + \frac {360 x^{4}}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} + \frac {288 x^{2}}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} - \frac {32}{80 x^{\frac {9}{2}} + 80 x^{\frac {5}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(7/2)/(x**2+1)**2,x)

[Out]

45*sqrt(2)*x**(9/2)*log(-4*sqrt(2)*sqrt(x) + 4*x + 4)/(80*x**(9/2) + 80*x**(5/2)) - 45*sqrt(2)*x**(9/2)*log(4*
sqrt(2)*sqrt(x) + 4*x + 4)/(80*x**(9/2) + 80*x**(5/2)) + 90*sqrt(2)*x**(9/2)*atan(sqrt(2)*sqrt(x) - 1)/(80*x**
(9/2) + 80*x**(5/2)) + 90*sqrt(2)*x**(9/2)*atan(sqrt(2)*sqrt(x) + 1)/(80*x**(9/2) + 80*x**(5/2)) + 45*sqrt(2)*
x**(5/2)*log(-4*sqrt(2)*sqrt(x) + 4*x + 4)/(80*x**(9/2) + 80*x**(5/2)) - 45*sqrt(2)*x**(5/2)*log(4*sqrt(2)*sqr
t(x) + 4*x + 4)/(80*x**(9/2) + 80*x**(5/2)) + 90*sqrt(2)*x**(5/2)*atan(sqrt(2)*sqrt(x) - 1)/(80*x**(9/2) + 80*
x**(5/2)) + 90*sqrt(2)*x**(5/2)*atan(sqrt(2)*sqrt(x) + 1)/(80*x**(9/2) + 80*x**(5/2)) + 360*x**4/(80*x**(9/2)
+ 80*x**(5/2)) + 288*x**2/(80*x**(9/2) + 80*x**(5/2)) - 32/(80*x**(9/2) + 80*x**(5/2))

________________________________________________________________________________________

Giac [A]
time = 0.98, size = 98, normalized size = 0.75 \begin {gather*} \frac {9}{8} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {x}\right )}\right ) + \frac {9}{8} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {x}\right )}\right ) - \frac {9}{16} \, \sqrt {2} \log \left (\sqrt {2} \sqrt {x} + x + 1\right ) + \frac {9}{16} \, \sqrt {2} \log \left (-\sqrt {2} \sqrt {x} + x + 1\right ) + \frac {x^{\frac {3}{2}}}{2 \, {\left (x^{2} + 1\right )}} + \frac {2 \, {\left (10 \, x^{2} - 1\right )}}{5 \, x^{\frac {5}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(7/2)/(x^2+1)^2,x, algorithm="giac")

[Out]

9/8*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(x))) + 9/8*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(x)))
 - 9/16*sqrt(2)*log(sqrt(2)*sqrt(x) + x + 1) + 9/16*sqrt(2)*log(-sqrt(2)*sqrt(x) + x + 1) + 1/2*x^(3/2)/(x^2 +
 1) + 2/5*(10*x^2 - 1)/x^(5/2)

________________________________________________________________________________________

Mupad [B]
time = 0.07, size = 59, normalized size = 0.45 \begin {gather*} \frac {\frac {9\,x^4}{2}+\frac {18\,x^2}{5}-\frac {2}{5}}{x^{5/2}+x^{9/2}}+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {x}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {9}{8}-\frac {9}{8}{}\mathrm {i}\right )+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {x}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {9}{8}+\frac {9}{8}{}\mathrm {i}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(7/2)*(x^2 + 1)^2),x)

[Out]

((18*x^2)/5 + (9*x^4)/2 - 2/5)/(x^(5/2) + x^(9/2)) + 2^(1/2)*atan(2^(1/2)*x^(1/2)*(1/2 - 1i/2))*(9/8 - 9i/8) +
 2^(1/2)*atan(2^(1/2)*x^(1/2)*(1/2 + 1i/2))*(9/8 + 9i/8)

________________________________________________________________________________________